Cheaper (\& correct) blockchain protocols and programs

Maria A Schett mail@maria-a-schett.net

2021-10-01@ Languages, Systems, and Data Lab @ UCSC

Goals

1 blockchains are fun

2
cheaper protocols through (nearly) 'telepatic' computers [PODC21]

$$
? \Rightarrow!
$$

Blockchain

"no standard technical definition but is a loose umbrella term"

referring to

"systems that bear varying levels of resemblance to Bitcoin and its ledger" [1]

[1] A Narayanan \& J Clark. Bitcoin's Academic Pedigree. Queue, 15(4):20, 2017

Data structure

[Ethereum]

$\approx \approx==$ transactions || "smart contracts"

Govern shared state

EXPENSIVE!

Cheaper blockchain ...

protocols

programs

guaranteeing correctness

Cheaper blockchain protocols
-chain to -DAG
" $\log \mathrm{DAG}^{\prime \prime}$

Interpret $P:=$ reliable broadcast of $\approx r$

interpret protocol

Build a block DAG

Block DAG framework

user

$$
\downarrow_{\operatorname{shim}(P)} \approx r
$$

gossip protocol

interpret protocol

For every correct server if protocol P has safety or liveness property \mathbb{P} then shim(P) preserves \mathbb{P}.
idea: block DAG is a reliable point-to-point link

Cheaper blockchain programs

SFS (Stack Functional Specification)

SMT solvers

Satisfiability Modulo Theories

first-order logic

BV, LIA, unintepreted functions ...
[decidable]

Synthesize

$\exists \mathrm{t}_{1} \ldots \mathrm{t}_{\mathrm{n}^{\prime}-\mathrm{t}_{1}-\mathrm{t}_{2}} \cdots-\mathrm{t}_{\mathrm{n}}$
SWAP1 $\uparrow 1$ PUSH $\mapsto 2$
fADD1 42 ...

Synthesize
$\left\{t_{1} \cdots t_{n \cdot-t_{1}-t_{2} \cdots-t_{n}}\right.$

SWAP1 $\uparrow 1$ PUSH $\mapsto 2$
fADD1 $\uparrow 42$...

$$
t_{j}=1 \Rightarrow s_{0, j+1}=s_{1, j+1} \wedge
$$

$$
s_{1, j+1}=s_{0, j+1} \wedge
$$

$$
\operatorname{move}\left(s_{2, j+1} \ldots s_{k, j+1}\right)
$$

$$
\begin{array}{|c|c}
\mathrm{x} 4 & \mathrm{~s}_{0, n}=\mathrm{x} 4 \\
\mathrm{~s}_{1, \mathrm{n}}=\mathrm{x} 7
\end{array}
$$

Synthesize

$\left\{t_{1} \cdots t_{n \cdot-t_{1}-t_{2}} \cdots-t_{n}\right.$
SWAP1 $\quad 1$ PUSH $\mapsto 2$
fADD1 $\uparrow 42$...

$$
\mathrm{t}_{\mathrm{j}}=2 \Rightarrow \ldots
$$

Synthesize
$\frac{\exists t_{1} \cdots t_{n \cdot-t_{1}-t_{2} \cdots-t_{n}}\left[-a_{1}-a_{2} \cdots-a_{n}\right.}{}$

SWAP1 $\uparrow 1$ PUSH $\mapsto 2$ fADD1 $\uparrow 42$...
$\mathrm{t}_{\mathrm{j}}=2 \Rightarrow \mathrm{~s}_{0, \mathrm{j}+1}=\mathrm{a}_{\mathrm{j}} \wedge$
$a_{j}<2^{256}$ ^
move($\left.\mathrm{s}_{0, j+1, \ldots} \mathrm{~s}_{\mathrm{k}, \mathrm{j}+1}\right)$
$x_{i} \mapsto 2^{256}+i$

SWAP1 1 PUSH $\mapsto 2$ fADD1 $\uparrow 42$...

$$
\begin{aligned}
t_{j}=42 \Rightarrow & s_{0, j+1}=x 2 \wedge \\
& s_{1, j+1}=x 3 \wedge \\
& \operatorname{move}\left(s_{2, j+1} \ldots s_{k, j+1}\right)
\end{aligned}
$$

$$
x 5=f_{A D D 1}(x 2, x 3)
$$

SWAP1 $\quad 1$ PUSH $\mapsto 2$ fADD1 $\uparrow 42$...

$\mathrm{t}_{\mathrm{j}}=42 \Rightarrow \mathrm{~s}_{0, \mathrm{j}+1}=\mathrm{x} 2 \wedge$
$\mathrm{s}_{1, \mathrm{j}+1}=\mathrm{x} 3 \wedge$
move($\mathrm{s}_{2, \mathrm{j}+1} \ldots \mathrm{~s}_{\mathrm{k}, \mathrm{j}+1}$)

Coses)

$$
t_{j}=42 \Rightarrow \underbrace{\text { cost }}+3
$$ min

Synthesize

[1] github.com/mariaschett/syrup-backend

Evaluation

128 smart contract \Rightarrow ~50 k blocks

Wrapping Up

Goals

 through cheaper programs [CAV20]

2cheaper protocols through (nearly) 'telepatic' computers [PODC21]
blockchains are fun
[mail@] maria-a-schett.net

