

Kruskal's Tree Theorem for Term Graphs

Georg Moser Maria A Schett

TERMGRAPH 2016, Eindhoven

April 8, 2016

(our) background: **term rewriting** $\mathcal{R} : f(a, b, x) \rightarrow f(x, x, x)$ $g(x, y) \rightarrow x \quad g(x, y) \rightarrow y$ $f(a, b, g(a, b)) \rightarrow_{\mathcal{R}} f(g(a, b), g(a, b), g(a, b)) \rightarrow_{\mathcal{R}}^{2} f(a, b, g(a, b))$

term graph rewriting to simulate term rewriting

 \implies directed, acyclic, first-order term graphs

termination technique for term graph rewriting

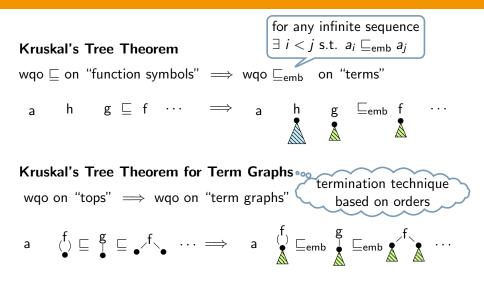
related work interpretion methods:

- Proving Termination of Graph Transformation Systems Using Weighted Type Graphs over Semirings, Bruggink et al, 2015
- Non-simplifying Graph Rewriting Termination, Bonfante et al, 2013

inspiration

- Simplification Orders for Term Graph Rewriting, Plump, 1997
 - different view on term graphs and embedding
 - different proof of Kruskal's Tree Theorem

Well-Founded Recursive Relations, Jean Goubault-Larrecq, 2001



Term Graphs (formally)

term dag S : (N, label, succ), $n \in S$

- nodes $N \subseteq \mathbb{N}$
- label : $N \rightarrow \mathcal{F}$ unction symbols $\cup \mathcal{V}$ ariables

• succ :
$$N \rightarrow N^*$$
 $n \rightarrow n^*$

f label
$$(n)\in \mathcal{V}$$
 then $ext{succ}(n)=[\;]$

else succ $(n) = [n_1 \dots n_{arity(label(n))}]$

 $\begin{array}{c} \mathsf{inlets} = [\textcircled{2}, \textcircled{2}] \\ \mathsf{g} \\ \downarrow \\ \mathsf{a} \end{array}$

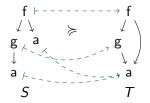
term graph root : $\exists n.n \rightharpoonup^* n'$ for all $n' \in S$ sub graph $S \upharpoonright [n_1, \ldots, n_k] : \{n \mid n_i \rightharpoonup^* n, 1 \leq i \leq k\}$

argument graph *S*∣inlets

• inlets : succ(root(S))

misc size: |S| ground: label : $N \rightarrow \mathcal{F}$

Sharing



 $n \in S$ is morphic if

•
$$label_{S}(n) = label_{T}(m(n))$$

• if $n \stackrel{i}{\longrightarrow}_{S} n_i$ then $m(n) \stackrel{i}{\longrightarrow}_{T} m(n_i)$ for all appropriate *i*.

morphism $m: S \rightarrow T$ is morphic in all $n \in S$

sharing $S \succeq T$, if exists $m: S \rightarrow T$ and m(root(S)) = root(T)

Tops & Top & Precedence

$$\mathsf{Tops}(\mathsf{f}) = \begin{array}{cc} \mathsf{f} & \mathsf{f} \\ & & \swarrow & & \swarrow \\ & & & \bigtriangleup & & \bigtriangleup \end{array}$$

$$\mathsf{Tops}(f) = \{T \mid S \succcurlyeq T\}$$

• S = tree representation of f($\triangle, \dots, \triangle$)

$$Top(n) = (N', label', succ')$$

•
$$N' = n \cup n_i$$
, where $n_i \in \text{succ}(n)$

• label'
$$(n_i) = \triangle$$

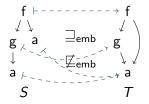
Т

 $\begin{array}{ccc} f & g & f \\ () & \Box & \downarrow & \Box & \checkmark \\ \land & \land & \land & \land \end{array}$

precedence transitive \sqsubseteq

- $S \preccurlyeq T$ and $T \preccurlyeq S$ implies
 - $S \sqsubseteq T$ and $T \sqsubseteq S$
- $T \sqsubseteq S$ implies $|T| \leq |S|$.

Embedding



- after \sqsubseteq_{emb} Plump (1997)

 $S \supseteq_{emb} T$ if there exists a partial, surjective function $m: S \to T$, s.t. for all nodes s in the domain of S, we have

- $\operatorname{Top}_{S}(s) \supseteq \operatorname{Top}_{T}(m(s))$
- $m(s) \rightharpoonup_T m(s')$ implies $s \rightharpoonup_S^+ s'$.

transitivity \exists_{emb} is transitive $S \sqsupseteq_{emb} T \sqsupseteq_{emb} U$ by $m_{S,U}(n) = m_{T,U}(m_{S,T}(n))$

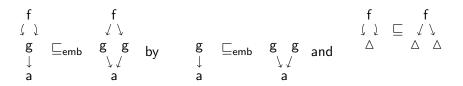
Theorem (Kruskal's, for Term Graphs)

If \sqsubseteq is a wqo on Tops(\mathcal{F}), then \sqsubseteq_{emb} is a wqo on ground term graphs.

not $\exists i < j$ s.t. $a_i \sqsubseteq_{emb} a_j$

minimal bad sequence argument

- assume minimal "bad" infinite sequence
- construct even smaller infinite sequence of arguments ("good"!)
- "re-attach tops"



Challenges

liberal definition of \sqsubseteq_{emb}

•
$$m(s) \rightharpoonup_T m(s')$$
 implies $s \rightharpoonup_S^+ s'$

simplification order $\succ \supseteq \Box_{emb}$

"all steps oriented"

Conclusion

Kruskal's Tree Theorem for Term Graphs

wqo on "tops" \implies wqo on "term graphs"

$$\mathsf{a} \quad (\stackrel{f}{\bullet}) \sqsubseteq \stackrel{g}{\bullet} \sqsubseteq \stackrel{f}{\bullet} \stackrel{f}{\bullet} \cdots \Longrightarrow \quad \mathsf{a} \quad (\stackrel{f}{\bullet}) \sqsubseteq_{\mathsf{emb}} \stackrel{g}{\bullet} \sqsubseteq_{\mathsf{emb}} \stackrel{f}{\bullet} \stackrel{f}{\bullet} \cdots$$

Future Work

- investigate how to enforce order on arguments
- design termination technique based on $\sqsubseteq_{\mathsf{emb}}$
- automation

Thank you for your attention!

Well-Quasi Orders

- A sequence over A is called *good*, if there are i < j, such that $a_i \leq a_j$. Otherwise it is called *bad*.
- A reflexive and transitive order
 <u>b</u> is a well-quasi order (wqo), if every infinite sequence is good.
- A sequence is a *chain*, if $a_i \leq a_{i+1}$ holds for all $i \geq 1$.

Lemma

If \succeq is a wqo then every infinite sequence contains a chain.

Theorem

If \sqsubseteq is a wqo on Tops(\mathcal{F}), then \sqsubseteq_{emb} is a wqo on ground term graphs.

proof.

- We construct a minimal bad sequence of term graphs **T**.
 - Assume we picked T_1, \ldots, T_{n-1} .
 - We pick T_n which is minimal wrt. $|N_{T_n}|$, s.t. there are bad sequences that start with T_1, \ldots, T_n .
- $G_i = (N_{T_i} \setminus {\text{root}(T_i)}, \text{label}_{T_i}|_{N_{G_i}}, \text{succ}_{T_i}|_{N_{G_i}}, \text{succ}_{T_i}(\text{root}(T_i)))$
- $G = \bigcup_{i \ge 1} G_i$
- We want to proof \sqsubseteq_{emb} is a wqo on G.
- Assume G admits a bad sequence **H** with $H_1 = G_k$.
- $G' = \bigcup_{i \ge 1}^k G_i$
- G' is finite, there exists an index l > 1, s.t. for all $H_i, i \ge l$, $H_i \in G \setminus G'$

proof cont.

• $T_1, \ldots, T_{k-1}, G_k, \mathbf{H}_{\geq l}$ is good by minimality of **T**.

• So we try to find
$$H_i \sqsubseteq_{emb} H_j$$
.
 $\underbrace{T_1, \dots, T_{k-1}}_{i,j}, G_k, \mathbf{H}_{\geqslant l}$ but $H_i = T_i \sqsubseteq_{emb} T_j = H_j \notin$
 $\underbrace{T_1, \dots, T_{k-1}}_{i}, \underbrace{G_k}_{j}, \mathbf{H}_{\geqslant l}$ but $H_i = T_i \sqsubseteq_{emb} G_k = H_j \land G_k \sqsubseteq_{emb} T_k \notin$
 $\underbrace{T_1, \dots, T_{k-1}}_{i}, \underbrace{G_k}_{j}, \mathbf{H}_{\geqslant l}$ $H_j \notin G'$ but $H_j = G_m \sqsubseteq_{emb} T_m, m > k$ and
 $H_i = T_i \sqsubseteq_{emb} G_m = H_j$ hence $T_i \sqsubseteq_{emb} T_m$

- Hence, $H_i \sqsubseteq_{emb} H_j$ in $G_k, \mathbf{H}_{\geq l}$
- ∮ badness of H
- Hence, \sqsubseteq_{emb} is work on G.

proof cont 2.

- **f** sequence of Top of **T**
- **f** contains a chain \mathbf{f}_{ϕ_i} , $f_{\phi_i} \sqsubseteq f_{\phi_j}$
- \sqsubseteq_{emb} is work on G_{ϕ_i} hence we have $G_{\phi_i} \sqsubseteq_{emb} G_{\phi_i}$
- implies $T_{\phi_i} \sqsubseteq_{\mathsf{emb}} T_{\phi_j}$

∮ badness of T