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R
(our) background: term rewriting R :f(a,b,x) — f(x,x,x)

glx,y) = x g(xy)—=y

f(a, b, g(a.b)) —r f(g(a. b). g(a, b). g(a, b)) =% f(a,b,g(a, b))

term graph rewriting to simulate term rewriting

f f f f f
JINV =g L) =g (L G: /v o (L
abg g a abx X

VAR VAR

a b a b

— directed, acyclic, first-order term gg%phs
0,

termination technique
for term graph rewriting

(Schett@ TERMGRAPH) Kruskal's Tree Theorem for Term Graphs 2/11



related work interpretion methods:

@ Proving Termination of Graph Transformation Systems Using
Weighted Type Graphs over Semirings, Bruggink et al, 2015

@ Non-simplifying Graph Rewriting Termination, Bonfante et al, 2013

inspiration
@ Simplification Orders for Term Graph Rewriting, Plump, 1997

e different view on term graphs and embedding

e different proof of Kruskal's Tree Theorem

[l Well-Founded Recursive Relations, Jean Goubault-Larrecq, 2001
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http://www-users.cs.york.ac.uk/~det/Papers/mfcs.97.pdf

R
[for any infinite sequence]

Ji<jst ai Eemb aj

/
wqgo C on “function symbols” = wqo C¢mp  0On “terms”

Kruskal's Tree Theorem

a h g E f = g Eemb f

a h
AR A

Kruskal’s Tree Theorem for Term Graphs-c

termination technique

wqo on “tops” == wqo on “term graphs” based on orders
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Term Graphs (formally)

f: @
()
g:®
!
a:(®
S

inlets = [, @)

g
1
a
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term dag S : (N,label,succ), n€ S

e nodes NCN

e label : N — Function symbols U Variables

e succ: N—-N* n—n

if label(n) € V then succ(n) =[]

else succ(n) = [n1 ... Narity(label(n))]

term graph root : In.n —* n' foralln' € S
sub graph S[[n1,...,ng] : {n|nj =" n1<i<k}
argument graph  SfJinlets

e inlets : succ(root(S))

misc size: |S| ground: label : N — F

Kruskal's Tree Theorem for Term Graphs




L

Fhroomm o S f n € S is morphic if

VY = Y e labels(n) = label+(m(n))
g, 4 .8 . .
lA\\\__,/’ \ e if n s n; then m(n) =1 m(n;)
AL e for all appropriate i.

morphism m : S — T is morphicin all n € §

sharing S = T, if exists m: S — T and m(root(S)) = root(T)
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Tops & Top & Precedence

Tops(f) = f f Tops(f) ={T |S= T}
ﬁAl AJ XA e S = tree representation of f(A,...,A)
Top( f:@® )= f:® Top(n) = (N', label’, succ’)
L_ é) AL é) e N' = nU n;, where n; € succ(n)
) ' o label'(n}) =A
a:(® e succ'(n;) =]
£ g £ precedence transitive C
(YE | E /Y e S Tand T xS implies
A A A A SCTand TC S
o TLC Simplies |T|<|S|.
(Schett@ TERMGRAPH)
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. .., - i,NSA
Embedding

fhmmmmmmm- o f
VAN - v e after Cemp Plump (1997)
g, a —emb g . . i
i‘\f\ Y e idea take sharing below direct
a2, \\zft“‘j N successors into account

a
T new definition of C.,,

S Jemb T if there exists a partial, surjective function m: § — T, s.t.
for all nodes s in the domain of S, we have

e Tops(s) 2 Topr(m(s))
e m(s) =1 m(s') implies s =& s'.

transitivity . is transitive
S —emb T —emb U by mS,U(n) - mT,U(mS,T(n))
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Theorem (Kruskal's, for Term Graphs)

If C is a wgo on Tops(F), then Cemp is @ wgo on ground term graphs.

not 3/ < /st a Cemp aj]

minimal bad sequence argument
e assume minimal “bad” infinite sequence
e construct even smaller infinite sequence of arguments ( “good"!)

e ‘“re-attach tops”

f f ¢ f
0 n =AY
& Comp & € C.p, 8 8 A A A
! R ° n

a a a a
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. .., - i,NSA
Challenges

liberal definition of "

f f f f
N Eemp /) but also /N Demb /)
a b b a a b b a

e m(s) =1 m(s") implies s =& &’

simplification order > D J.p

f f f f f

JN Temb () JV Temb () Eemb ()
a a a a a a a

“all steps oriented”

(Schett@ TERMGRAPH) Kruskal's Tree Theorem for Term Graphs 10/11



L
Conclusion

Kruskal’s Tree Theorem for Term Graphs

wqo on “tops” = wqo on “term graphs”

f f
f g f () g VAN
a () E L N, - = a Agembégembéé
Future Work

e investigate how to enforce order on arguments
e design termination technique based on Cemp

e automation

Thank you for your attention!
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L
Well-Quasi Orders

e A sequence over A is called good, if there are i < j, such that
aj = a;. Otherwise it is called bad.

e A reflexive and transitive order > is a well-quasi order (wqo), if
every infinite sequence is good.

e A sequence is a chain, if a; < aj;1 holds for all i > 1.

Lemma

If = is a wqo then every infinite sequence contains a chain.
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If C is a wgo on Tops(F), then Cemp is @ wgo on ground term graphs.

proof.
e We construct a minimal bad sequence of term graphs T.

e Assume we picked T1,..., T _1.
o We pick T, which is minimal wrt. |[Nt,|, s.t. there are bad sequences
that start with T1,..., T,.

Gi = (N7, \ {root(T;)}, label 7, | , succr;|ng, , succr,(root(T;)))

e G= Ui>1 Gi
We want to proof Cemp is a wgo on G.

e Assume G admits a bad sequence H with H; = G.

e G'= U,-k>1 Gi

G’ is finite, there exists an index | > 1, s.t. for all H;,i >/,
H e G \ G’
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proof cont.
o T1,..., Tk_1, Gk, H>; is good by minimality of T.
* So we try to find H; Eemp H;.

Ti,oos T, GisHeyp o but Hi = T Cemb Tj = Hj 4
—_—

1)
Tiooos Tict, G Hsy but Hy = Ti Cemp Gk = Hj A Gk Cemp Tk 4
N———

i J
Tla..., Tk—l, Gk, H)I Hj ¢ G’ but H] = Gm Eemb Tmam > k and
" " Hi=Ti Cem G = H hence T; Coms Ty

!

° Hence, H,' Cemb HJ in Gk, H>/
® 4 badness of H
e Hence, Cemp is wqo on G.
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proof cont 2.
e f sequence of Top of T
e f contains a chain fy, fy, C f¢.
* Cemb is wqo on Gy, hence we have Gy, Eemp Gy,

o implies Ty, Cemb Ty,
Z =
! L)
A A
G¢,~ Eemb Gd)j
e 4 badness of T O
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