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Abstract

This thesis provides an introduction to termgraph rewriting – being an ade-
quate model to simulate term rewriting, i.e., a term s rewrites to a term t if
for the corresponding termgraphs S, T it holds that S (graph) rewrites to T .
This work focuses on outermost rewriting. Outermost rewriting is covered in-
tently by exploring potential benefits introduced particularly by the strategy.
In the course of this work outermost graph rewriting has been implemented in
the functional programming language Haskell, providing ground work for an
efficient implementation and serving laboratory purposes.
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1 Introduction

Term rewriting is a Turing-complete, yet easy to understand, model of compu-
tation. Evolving from equational theory, term rewriting differs by introducing a
direction to equations. This limitation of applicability of equations – i.e., only
directed – yields a model of computation and raises the question of possible
termination and confluence of a derivation. Term rewriting has its application
in algebra, recursion theory, software engineering and programming languages
[4]. Here especially functional programming languages ought to be mentioned,
bearing great resemblance to term rewriting. Consider the function square (sq);
deriving from mathematical knowledge one knows: sq(x) = x + x. Orientation
of this equation from left to right leads to sq(x) −→ x + x as first example for
a rewrite rule, and consider x + 0 −→ 0 as a second. Please note that term
rewriting works on a syntactical level and the semantics are merely coinciden-
tal. Informally these rules can be applied to the term sq(0) leading to the
following derivation:

sq(0) −→ 0 + 0 −→ 0

The general idea of term rewriting can be lifted to another data structure
than terms – giving rise to graph rewriting. By representing terms as graphs,
one gets an amiable feature, namely sharing. Thus please consider the above
derivation on a graphical level.

sq

0

=⇒
+

0

=⇒ 0

One may observe that in the first step of this graphical derivation 0 was not
duplicated as it happened in the above term rewrite sequence. This turns out to
be the main benefit of graph rewriting. To fully benefit from this observation
in all possible cases one has to establish that graph rewriting is sufficient to
simulate term rewriting. This simulation is interesting because graph rewriting
allows a precise control over the resources occupied. Thus the following theories
have evolved.

In [8] and again in [2] it has been established that graph rewriting is adequate
to simulate term rewriting. In [3] the simulation was restricted to innermost
term rewriting and leading to a more efficient implementation. The aim of this
thesis is to inspect adequacy for outermost graph rewriting with the outlook of
describing an efficient implementation similar to [3].
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1 Introduction

The second part of this thesis consists of an implementation of outermost
graph rewriting in a programming language of my choice. This part was ex-
tended throughout the thesis, finally providing a laboratory tool to experiment
with graph rewriting and providing groundwork for further implementation.

This thesis is structured as follows. Chapter 2 covers the preliminaries: Term
rewriting and graph rewriting. Chapter 3 shows the relationship between term
rewriting and graph rewriting, i.e., that graph rewriting can be used to simulate
term rewriting. This chapter focuses on different evaluation strategies for graph
rewriting. The goal of implementing the outermost evaluation strategy is ex-
plored – following up the idea of [3], which focuses on innermost graph rewriting.
A technique for implementing outermost rewriting successfully, as presented in
[2] for full rewriting, is introduced. Chapter 4 presents the implementation of
graph rewriting in Haskell by giving an introduction to the interface(s) of the
tool and shortly presenting parts of the implementation. Chapter 5 deals with
the evaluation of this aforementioned implementation. Therefore first a theo-
retical approach is taken. The advantages of graph rewriting are illuminated.
Following up is a practical evaluation shedding new light on the program. The
thesis concludes in Chapter 6 with gathered knowledge from this project.
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2 Preliminaries

Let R be a binary relation on a set S and x, y ∈ S. Let Rn denote the n-
fold composition of R, i.e., xRny if there are elements x0 . . . xn ∈ S such that
x = x0Rx1 . . . Rxn = y. The transitive closure of R is denoted by R+, i.e.,
xR+y if xRny for some n ≥ 1. The transitive and reflexive closure is denoted
by R∗, i.e., xR∗y if xR+y or x = y. An element x ∈ S is called R-minimal
if there exists no element y such that xRy. Let xR!y denote xR∗y and y is
R-minimal.

Let f be a function f : A→ B and C ⊆ A. The operator � restricts a function
to a subset of its domain. That is, (f�C) : C → B with (f�C)(x) = f(x).

2.1 Term Rewriting

Following mainly [4, 6] the concepts and notions of term rewriting will be in-
troduced. Throughout the chapter a real world example, namely addition and
multiplication of natural numbers, is used to illuminate the theory.

2.1.1 Terms

First the notion of terms will be formally introduced. Thereafter terms will be
inspected more closely by defining operations and relations on them.

Throughout this thesis, by V a countably infinite set of variables is denoted.
Variables will usually be denoted by x, y, z . . .

Definition 2.1. Let F denote a non-empty, finite set of function symbols.
Every function symbol f is associated with a natural number, which indicates
its arity and is denoted by ar(f). A function symbol f with ar(f) = 0 is called
a constant. Let F be called a signature.

Definition 2.2. A term is constructed over a signature F and variables V,
where F ∩ V = ∅. A term is defined inductively.

• Every x ∈ V is a term.

• If t1, . . . , tn are terms and f ∈ F , where ar(f) = n, then f(t1, . . . , tn) is a
term.

Let T (F ,V) denote the (countably) infinite set of terms over F and V. In Var(t)
all variables occurring in t are collected.

Some conventions throughout this thesis will be settled now. Function sym-
bols will be denoted by f, g, h, . . . throughout this work, whereas constants will
be treated differently by choosing from a, b, c.... Furthermore s, t . . . will denote
terms.
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2 Preliminaries

Example 2.3. Consider the signature F = {0, s,+, +} to model addition and
multiplication of natural numbers. The arities are ar(0) = 0, i.e., 0 is a constant,
ar(s) = 1 and ar(+) = ar( +) = 2. Then for instance 0, s(0),+(0, s(0)) are terms.
Usually infix notation is used when appropriate, i.e., +(0, s(0)) is written as
0+ s(0)

A unique starting point for further inspecting terms is provided by the defi-
nition of the root of a term.

Definition 2.4. The root of a term t ∈ T (F ,V), rt(t), is defined as

rt(t) :=

{
x if t is a variable x

f if t = f(t1, . . . , tn)

The inductive definition of terms implies the existence of subterms.

Definition 2.5. Let t ∈ T (F ,V). The set of subterms of t is defined by

subterms(t) :=

{
{t} if t is a variable

{t} ∪ subterms(t1) ∪ · · · ∪ subterms(tn) if t = f(t1, . . . , tn)

If s ∈ subterms(t) this is also written as sE t.

Example 2.6. The term t = 0 +(0 + 0) has the following subterms

{0+(0 + 0), 0, 0 + 0},

hence for instance 0E t.

Observing that the term 0 occurs thrice in t in the above example, this leads
to the question how to uniquely address a subterm in t. The concept of positions
will be introduced to tackle this problem.

Definition 2.7. A position is a finite sequence of natural numbers. The empty
position is denoted by ε. Position p and q may be concatenated by ·, i.e., p · q,
where position p · q = p if q = ε.

Definition 2.8. Let p be a position and t be a term, then the subterm of t at
position p, t|p, is defined as

t|p :=

{
t if p = ε

ti|q if p = i · q and t = f(t1, . . . , ti, . . . , tn)

All positions of s in t are collected in pos(s, t) := {p | t|p = s}.

To clarify the definition of position it is useful to represent a term in tree-
form.

Example 2.9. Consider the term t = 0+(0 + 0). Then t is represented as the
following labeled tree (with labels over F ∪V), where positions are indicated as
edge-labels.

4



2.1 Term Rewriting

+

0

1

+

0

1

0

2

2

From this tree one can derive the following sets: pos(0+(0 + 0), t) = {ε},
pos((0 + 0), t) = {2} and pos(0, t) = {1 , 2 · 1 , 2 · 2}.

Kindly note the correspondence between positions and paths in the tree repre-
sentation, a fact that is exploited later on. The tree representation also suggests
some relations between positions.

Definition 2.10. A position p is above a position p′ if p is a prefix of p′, i.e.,
pq = p′ for some position q. A position p is below a position p′, if p′ is above
position p, i.e., p′q = p for some q. Two positions are parallel if neither is above
or below the other.

2.1.2 Term Rewriting

So far terms and operations and relations on terms have been introduced, but
no way to manipulate terms was indicated. So at this point one can only write
a syntactically correct term down – whereas in this section a way to re-write
them shall be explored.

Definition 2.11. A rewrite rule l −→ r consists of l, r ∈ T (F ,V) satisfying the
constraints:

• rt(l) 6∈ V.

• Var(r) ⊆ Var(l)

A term rewrite system (TRS for short) is a set of rewrite rules.

Throughout this thesis R will denote a term rewrite system. To apply such a
rewrite rule to a term s, one has to find a pattern between s and the left hand
side of this rule. This is done by substituting variables.

Definition 2.12. A substitution is a mapping σ: V → T (F ,V), such that for
finitely many x holds σ(x) 6= x. A renaming is a bijective substitution with
V → V.

Definition 2.13. Let t be a term and σ some substitution. The extension of
σ to terms σ̂: T (F ,V)→ T (F ,V), i.e., an endomorphism, is defined as

σ̂(t) :=

{
σ(x) if t = x ∈ V
f(σ̂(t1), . . . , σ̂(tn)) if t = f(t1, . . . , tn)

Usually one does not distinguish between the substitution σ and its extension
σ̂. Following convention σ̂(t) will be denoted by tσ. A term t′ is called a variant
of t if there exists a renaming σr such that tσr = t′.

5



2 Preliminaries

Example 2.14. Consider the following substitution σ = {x 7→ 0, y 7→ 0 + 0}
and the term t = x+ y. The application of σ leads to tσ = 0+(0 + 0). To
illustrate a renaming consider σr = {x 7→ y, y 7→ z}. When applied to t with
tσr = y + z one gets a variant of t.

When replacing within a term some subterm with another term, a context is
necessary.

Definition 2.15. Extend F by a fresh constant symbol �, called the hole. A
term c ∈ T (F ∪ {�},V) is called a context if � occurs exactly once in c, i.e.,
pos(�, c) is a singleton.

Example 2.16. Consider the context c = 0 +� and the empty context ce = �
exemplary.

One can think of a context as a term with a hole, which can be made whole
by filling the hole with an arbitrary term. This does not exactly match the
definition, as it degrades contexts to incomplete terms, which they are not.
Nevertheless this image may clarify the intuition behind contexts.

Definition 2.17. A context c is denoted by C[�]p if c|p = �. C[t]p denotes
the replacement of � by the term t.

Example 2.18. Reconsider the context c = 0 +� from above and the term
t = 0 + 0, then C[�]2 and C[t]2 = 0+(0 + 0). When “filling” the empty context
ce = � where C[�]ε with t one gets C[t]ε = t = 0 + 0.

This concludes the list of ingredients to formally define a rewrite step.

Definition 2.19. Let R be a TRS. A term s rewrites to a term t, denoted by
s −→R t if there exists a rule l −→ r ∈ R, a substitution σ and a context C[�]p
such that s = C[lσ]p and t = C[rσ]p.

When special emphasis on the position at which the rewrite step was per-
formed is demanded, this will be indicated by −→R,p .

Example 2.20. The term

s = 0 +(0+ s(0))

rewrites with the rewrite system

R = {0 + x −→ x, 0+x −→ x}

using the rule

l −→ r = 0+x −→ x

with substitution

σ = {x 7→ s(0)}

and context

C[�]2 = 0 +�.

6



2.1 Term Rewriting

The application of σ to l, r leads to

lσ = 0+ s(0) and rσ = s(0).

By replacing the hole one gets

C[lσ]2 = 0 +(0+ s(0)) = s.

So by
C[rσ]2 = 0 +(s(0)) = t

one concludes s −→R t.

To sum up this section: A term s can be rewritten to a term t, whenever
there is a rule l −→R r applicable to s, i.e., a substitution from l to s at some
position p in s can be found. The rewrite step is then concluded by applying
this substitution on r and placing this instantiated r at position p in s.

2.1.3 Rewrite Sequences

Having managed the first step, this section deals with questions arising when
rewrite steps are applied repeatedly to a term.

A term s is called reducible with respect to a TRS R if there exists a term
t such that s −→R,p t at some position p. The subterm s|p is then called a
reducible expression, for short redex. The plural of redex is hereby defined as
redices.

A computation halts if there are no more reducible expressions, i.e., if no
rewrite step is possible anymore.

Definition 2.21. A term t is in normal form if it is not reducible. The set of
all normal forms corresponding to a TRS R is denoted by NF(R). Let s −→!

R t
denote s −→∗R t and t ∈ NF(R).

Example 2.22. Recall the TRS R = {0 + x −→ 0, 0+x −→ x}. In Example 2.20
the step

0 +(0+ s(0)) −→R 0 +(s(0))

was performed. The redex in this example is 0+ s(0), indicated through under-
line. Another redex can be found in this result and thus

0 +(s(0)) −→R 0

No more rule is applicable on the term 0 and the computation halts, hence 0 is
in normal form.

Considering again the start term s = 0 +(0+ s(0)) one might argue, that this
start term contains another redex, giving rise to the rewrite step

0 +(0+ s(0)) −→R 0

A term may contain several reducible expressions. An evaluation strategy
provides a mechanism to uniquely choose a redex out of several such. Therefore
positions will be considered again.

7



2 Preliminaries

Definition 2.23. A redex t within term s is outermost (innermost) if s|p = t
and there is no other redex t′ = s|p′ such that p′ is above (below) p.

By s o−→R t (s i−→R t) the outermost (innermost) rewrite step s −→R t is meant.

Example 2.24. Consider R = {x + 0 −→ 0} and the term

s = ((0 + 0) + 0) +(0 + 0)

represented as a tree with the redices marked through boxes as follows.

+

+ +

+

0 0

0 0 0

1 2

1 2

21

1 2

Then s|1 is outermost as position 1 is above s|1 · 1 which is an innermost redex.
The redex s|2 is innermost as much as outermost.

This example shows, that there might still be multiple outermost (innermost)
redices.

Definition 2.25. A redex position p is leftmost outermost (innermost) if for
all parallel outermost (innermost) redex positions q, p <lex q holds.

Similarly rightmost redices are defined, but throughout this thesis only left-
most outer- or innermost evaluation will be employed. It is implicitly assumed,
when just innermost or outermost is mentioned.

Note that although a rewrite strategy is employed, there might still be dif-
ferent outcomings of a computation. This is due to the fact, that multiple rules
may apply to the same redex and no order of choosing rules is defined. Still
producing a unique result is a desired property of a rewrite system.

Definition 2.26. A term s ∈ T (F ,V) is called confluent wrt. to a TRS R if
whenever s −→∗R t1 and s −→∗R t2 there exists a term t such that t1 −→∗R t and
t2 −→∗R t. A TRS R is confluent if all terms are confluent with respect to R.

Example 2.27. Consider the term s and the two possible rewrite sequences
shown below.

s = 0 +(0+ s(0))

0 + s(0)

0

i

i

o

Thus s is confluent with respect to R.

8



2.2 Graph Rewriting

2.2 Graph Rewriting

Ever so often a different representation of data allows some finesse. Therefore
now a new representation of terms will be discussed. As a motivating example
consider the term

t = sq(s(s(s(0)))+ s(s(s(0))))

As already introduced in Example 2.9, a term might be represented as a tree.
This representation of t will be depicted in the following figure.

sq

+

s

s

s

0

s

s

s

0

Note that the subterm s(s(s(0))) occurs twice in t. This suggests a more
space-efficient representation as a graph. Or more precise – as a directed acyclic
graph. The next figure illustrates this.

sq

+

s

s

s

0

So far this sharing of nodes saves space (in memory at least) but a more
interesting feature comes up, when applying a rewrite step. Therefore consider
the rule sq(x) −→ x + x. With term rewriting the derivation is

t = sq(s(s(s(0)))+ s(s(s(0)))) −→ (s(s(s(0)))+ s(s(s(0)))) +(s(s(s(0)))+ s(s(s(0))))

This step can be simulated with termgraphs, which are specified graphs cor-
responding to a term. Eager ones may forward to Definition 2.31. Intuitively a
termgraph corresponding to the above mentioned term t and the corresponding
rewrite step would look like this:

9



2 Preliminaries

sq

+ : 1

s

s

s

0

=⇒

+

+ : 1

s

s

s

0

Note that copying the argument of square was avoided by having two edges
point to same subgraph starting from 1 . So where the term’s size doubled
through the rewrite step, the growth of the termgraph was fixed. When not
a single but multiple steps are performed, the term’s blow-up might be expo-
nential in the length of the rewrite sequence. By not duplicating subterms this
does not happen with graph rewriting.

After this informal introduction to termgraphs the remainder of this chapter
introduces termgraphs formally. Further on it illustrates and defines graph
rewriting.

2.2.1 Term Graphs

First an appropriate graph structure will be discussed, followed up by the defi-
nition of termgraph. Furthermore the relation between terms and termgraphs
will be shown. Afterwards the novelty introduced by termgraphs – the possi-
bility of sharing nodes – will be discussed. As a way to distinguish subterms
representing the same subtermgraph positions are re-used. The notations follow
mainly [2, 3].

A termgraph is based on a graph. Therefore first a structure for graphs will
be introduced.

Let G = (VG,SuccG, LG) be a directed graph over a set of labels L, such that

• VG denotes a set of nodes or vertices.

• SuccG is a mapping VG → [VG, . . . ,VG], every node maps to an ordered
list of successors.

• LG is a mapping VG → L, connecting every node to a label.

To indicate that a node n is part of G, i.e., n ∈ VG, in the following this will
be abbreviated to n ∈ G.

Navigation through a directed graph G is done via the successor relation.
Suppose for some node n ∈ G holds SuccG(n) = [m1, . . . ,mi, . . . ,mk]. Then mi

is the ith successor of n denoted by n
i
⇀ mi. If i is of no importance this is

simply denoted by n ⇀ m. Recall that ⇀∗ denotes the reflexive and transitive
closure, as well as ⇀+ denotes the transitive closure of ⇀.

10



2.2 Graph Rewriting

Definition 2.28. Let G be a graph and V′ denote the set of vertices reachable
from a node n ∈ G, i.e., V′ := {m | n ⇀∗ m}. Recall the operator � from the
beginning. Let G′ := (V′, Succ�V′, L�V′). Then G′ is the subgraph of G reachable
from n. This will be denoted by G�n, overloading the operator �.

Further consider the definition of a directed, acyclic and rooted graph.

Definition 2.29. Let G be a directed graph as introduced above. Let DAG be
such a graph where additionally holds:

• G is rooted, i.e., there exists a unique root node rt(G) such that for all
nodes n, rt(G) ⇀∗ n holds.

• G is acyclic, i.e., n ⇀+ m implies n 6= m for all nodes n,m in G.

A node in a graph DAG can be shared.

Definition 2.30. A node n ∈ DAG is shared if there exist at least two distinct

paths rt(DAG)
i1⇀ · · · ik⇀ n and rt(DAG)

j1
⇀ · · · jl⇀ n i.e., there is an index z such

that iz 6= jz with z ≤ k and z ≤ l.

For such a graph DAG to be sufficient to model a termgraph, some restrictions
ought to hold.

Definition 2.31. Let DAG be a directed, acyclic and rooted graph. Then DAG
is a termgraph when

• the set of labels L is F ∪ V.

• for a node n ∈ DAG with LDAG(n) = f ∈ F and ar(f) = k it holds that
SuccDAG(n) = [n1, . . . , nk]

• variable nodes do not have successors, i.e., for every n ∈ DAG with
LDAG(n) ∈ V holds SuccDAG(n) = [].

• for all n1 ∈ DAG with LDAG(n1) = x ∈ V holds if LDAG(n2) = x then
n1 = n2.

Let S be such a termgraph, then Var(S) := {n | Ls(n) ∈ V} denotes the set of
all nodes representing a variable in S.

To transform a termgraph into the term it represents, consider the following
definition.

Definition 2.32. The term representation of a termgraph S is defined by

term(S) :=


x if L(rt(S)) = x ∈ V
f(term(S�n1), . . . , term(S�nk)) if L(rt(S)) = f ∈ F

and Succ(n) = [n1, . . . , nk]

In illustrated termgraphs a node n with L(n) = l will be depicted as

l : n

11



2 Preliminaries

Possibly n will be omitted if only the label is of importance.

Example 2.33. The termgraph representation of x+x follows

+ : 1

x : 2

As required by definition the variable node 2 is shared.

The question of how to uniquely address a subterm arises again. This becomes
even more tricky now, as due to sharing, subterms could really be represented
by the same structure. The answer stays the same: positions.

Definition 2.34. Let S be a termgraph and n be a node in S. The set of

positions of n in S is defined by pos(S, n) := {i1 · · · · · ik | rt(S)
i1⇀ · · · ik⇀ n}.

In pos(S) :=
⋃
n∈S pos(S, n) all positions in S are collected. Vice versa, for

position p = i1 · · · · · ik ∈ pos(S) the node n corresponding to this position is

defined as node(S, p) := n where rt(S)
i1⇀ · · · ik⇀ n.

To clarify positions within a termgraph consider the following example.

Example 2.35. Here the successor position is explicitly indicated by edge
labels.

+ : 1

s : 2

0 : 3

1 2

1

T

One can see that node 3 is reachable by multiple paths. So the set is

pos(T, 3 ) = {1 · 1 , 2 · 1}

Accordingly the node at those positions is

node(T, 1 · 1 ) = node(T, 2 · 1 ) = 3

Note that the size of pos(S, n) corresponds to the amount of subterms this
node represents. This provides another way to detect whether a node n is
shared. Clearly n in S is shared whenever |pos(S, n)| > 1.

Definition 2.36. A node n ∈ S is maximally shared if whenever term(S�n) =
term(S�m) then n = m. So the same subterm is represented by the same node.
A termgraph S is maximally sharing if all its nodes are maximally shared. A
node is minimally shared if it is either unshared or a variable node. A termgraph
S is minimally sharing if all its nodes are minimally shared.

Example 2.37. Consider the following termgraphs S1, S2 both representing
the term (0 + 0)+(0 + 0).

12



2.2 Graph Rewriting

+ : 1

+ : 2 + : 3

0

S1

not maximally shared

maximally shared

+ : 1

+

0

S2

maximally shared

The graph S1 is not maximally sharing because not all its nodes are maximally
sharing, i.e., 3 is not maximally shared as term(S1� 2 ) = term(S1� 3 ) but
2 6= 3 . The corresponding maximally sharing termgraph is depicted as S2.
Note here especially that the root, 1 is maximally and minimally sharing.

This concludes the introduction of termgraphs, now a way to rewrite them
will be explored.

2.2.2 Rewriting - A Graphical Approach

In this section the mechanism behind graph rewriting will be illustrated and
defined. Therefore first an overview over the necessary (intermediate) steps will
be given. Intuitively, applying a graph rewrite rule L =⇒ R to a redex node n
in a term graph S amounts to the following steps:

1. Determine the graph morphism m between the left hand side L and the
subgraph rooted at n in S. The graph morphism plays the role of the
substitution in term rewriting.

2. Add a fresh copy of the right hand side R to S.

3. Apply the morphism m to the added right hand side by redirecting all
variable nodes to the corresponding nodes in S.

4. Redirect all edges going to n to the root of R.

5. Finally remove all nodes that became inaccessible.

The next example serves the purpose to illustrate the definitions beforehand.
This example will not illustrate the benefits of graph rewriting – but neither
will it feature the problems to come.

Example 2.38. Consider the rule s(0+x) −→ s(x) and the term s(s(0+ s(0))).
Hence

s = s(s(0+ s(0))) −→ s(s(s(0))) = t with σ = {x 7→ s(0)}

Now this step will be performed with graph rewriting following the above
structure.

To simulate the rewrite step also the left hand side and the right hand side
of the rule in R will be represented as termgraphs. Note that the variable node
x is shared. This is indicated by the same node number 1 .

13



2 Preliminaries

s

+

0 x : 1

left hand side

s

x : 1

right hand side

The term s will be transformed into a termgraph S.

s

s

+

0 s

0

1. Now one finds a mapping (which plays the role of substitutions in term
rewriting) between the left hand side of the rule and S. Therefore looking at the
structure of the left hand side within S is required. Variables may be mapped
to everything, this being the nature of variables.

s

s

+

0 s

0

s

+

0 x : 1

m( 1 ) = s

0

2 . Like in term rewriting the rewritten subgraph will be replaced by the
right hand side of the rule. Recall the rewrite rule s(0+x) −→ s(x) and the
substitution σ = {x 7→ s(0)} . Adding a fresh copy of the right hand side of the
rule to S leads to:

s

s

+

0 s

0

s

x : 1

14



2.2 Graph Rewriting

3. Applying the mapping from above (the “graph substitution”) on the right
hand side of the rule yields the following graph.

s

s

+

0 s

0

s

x : 1

4. Now the right hand side of the rule is plugged into S instead of the
rewritten subgraph. This is again done by redirecting edges, this time onto the
root of the right hand side.

s

s

+

0 s

0

s

x : 1

5. Finally one has to delete inaccessible nodes, i.e., only nodes reachable
from the root are kept. This garbage collection corresponds to calling the
subgraph (�), starting from the root. In a picture:

s

s

s

0

This concludes the informal example graph rewrite step.

First the concept of redirecting a node will be defined. To avoid inconsisten-
cies when merging two termgraphs consider the following definition.

Definition 2.39. Let S, T be termgraphs. S and T are properly sharing, if
n ∈ VS ∩ VT implies LS(n) = LT (n) and SuccS(n) = SuccT (n). If S, T are
properly sharing let S ∪ T denote the union of S and T , where

S ∪ T := (VS ∪ VT ,SuccS ∪ SuccT , LS ∪ LT )

15



2 Preliminaries

Note that the union is well defined because S and T are properly sharing.

Definition 2.40. Let S, T be properly sharing termgraphs and let n be a node
with n ∈ S, but n 6∈ T . Let r : VS∪T → VS∪T be a function which replaces n
by rt(T ).

r(m) :=

{
rt(T ) if m = n

m otherwise

Informally, by applying r to SuccS∪T all edges pointing to n are redirected to
rt(T ). Let (S∪T )′ = (VS∪T ,Succ(S∪T )′ , LS∪T ), where for all nodes m in VS∪T if
SuccS∪T (m) = [m1, . . . ,mk] then Succ(S∪T )′(m) = [r(m1), . . . , r(mk)]. Finally
the redirection of n to the termgraph T , denoted by S[T ]n is defined by

S[T ]n :=

{
T if n = rt(S)

(S ∪ T )′�rt(S) otherwise

The second case deletes all nodes which are reachable only from n and thus are
now inaccessible.

To clarify this definition now a stepwise example will be given.

Example 2.41. Consider the termgraphs S and T .

+ : 1

0 : 2 sq : 3

0 : 4

S

+ : 5

0 : 6

T

Note that Vs ∩ VT = ∅, hence they are properly sharing. Now consider the
redirection of node 3 to T , i.e., r( 3 ) = 5 and r( n ) = n for all other nodes in
S ∪ T .

+ : 1

0 : 2 sq : 3

0 : 4

+ : 5

0 : 6

(S ∪ T )′

Finally S[T ] 3 = (S ∪ T )′� 1 is depicted in the following.

+ : 1

0 : 2 + : 5

0 : 6

S[T ] 3

16



2.2 Graph Rewriting

Recall Definition 2.13 where substitution was extended to an endomorphism
on terms. Similarly a graph morphism poses an endomorphism on termgraphs.

Definition 2.42. A morphism between two termgraphs S, T is a mapping
m : S → T such that

• m(rt(S)) = rt(T )

• for all n ∈ S with LS(n) ∈ F

1. LS(n) = LT (m(n))

2. if SuccS(n) = [n1, . . . nk] and SuccT (m(n)) = [n′1, . . . n
′
k] then

m(n1) = n′1, . . . ,m(nk) = n′k

Example 2.43. Consider the termgraphs S1, S2 and T .

s : A

x : B

S1

+ : C

0 : D x : E

S2

s : 1

s : 2

+ : 3

0 : 4

T

Here it is possible to find the following morphism:

m1 : S1 → T with A 7→ 1 , B 7→ 2

Also one can find the morphism:

m2 : S1 → T � 2 where A 7→ 2 , B 7→ 3

Morphisms being such a crucial concept deserve another example. Consider the
termgraphs S2 and T with

m3 : S2 → T � 3 where C 7→ 3 , D 7→ 4 , E 7→ 4

Definition 2.44. Let S, T be properly sharing termgraphs and m : S → T
be a morphism. The application of the morphism m to S, denoted as m(S),
is defined by redirecting all variable nodes in S to their image. That is, for
{n1 . . . nk} = Var(S) set S0 := S, Si := Si−1[T �m(ni)]ni for 1 ≤ i ≤ k and
m(S) := Sk. Or, in other words,

m(S) = (((S[T �m(n1)]n1)[T �m(n2)]n2) · · · )[T �m(nk)]nk

Example 2.45. Consider the termgraphs S and T

17



2 Preliminaries

s : A

x : B

S

s : 1

s : 2

+ : 3

0 : 4

T

and the morphism m : S → T � 2 with A 7→ 2 , B 7→ 3 . The application m(S)
yields

s : A

+ : 3

0 : 4

Definition 2.46. A graph rewrite rule consists of two properly and minimally
sharing termgraphs L and R. Analog to term rewrite rules the following con-
ditions must hold:

• LL(rt(L)) /∈ V

• Var(R) ⊆ Var(L)

A graph rewrite rule is denoted by L =⇒ R. A set of graph rewrite rules is called
graph rewrite system (GRS for short).

Recall the definition of minimally sharing and note that a variable node n is
minimally shared. Also note that all variable nodes occurring in R also have to
occur in L. Next are two ways to depict a graph rewrite rule.

Example 2.47. To emphasis properly sharing both rules could be depicted
in a DAG. Note that hereby the root nodes have to be given, to be able to
distinguish the left hand side from the right hand side. So rt(L) = 1 and
rt(R) = 3 .

+ : 1

x : 2

sq : 3

However, to be closer to the representation indicated by term rewrite rules,
another possible representation is following.

+ : 1

x : 2

L

=⇒
sq : 3

x : 2

R

18



2.2 Graph Rewriting

Throughout this thesis the sharing of variable nodes will be indicated only
by common node numbers.

For convenience the rules employ minimal sharing, because then, if no mor-
phism can be found it is not because of inconvenient sharing of the graph rewrite
rule.

As an invariant of termgraphs every node has to appear just once. Thus
before combining two termgraphs S and T it has to be ascertained, that this
fact holds up – by ascertaining that S and T are properly sharing. By making
sure that the VS and VT are disjoint this condition can by met. This makes
renaming a necessary technicality.

Definition 2.48. A renaming of a graph rewrite rule L =⇒ R with respect to
a termgraph S is the application of a bijective morphism m : VL∪R → V(L∪R)′

such that VS ∩ V(L∪R)′ = ∅.

Example 2.49. Recall the graph rewrite rule from Example 2.47. Further
consider a termgraph S with the set of vertices VS = { 1 , 2 }. This requires,
for instance, the following renaming: m : 1 7→ 4 , 2 7→ 5 . The resulting rule
L′ =⇒ R′ is depicted below:

L′ =

+ : 4

x : 5

=⇒ R′ =

sq : 3

x : 5

This concludes the necessary ingredients to define a graph rewrite step.

Definition 2.50. Given a graph rewrite system G, a termgraph S rewrites
to a termgraph T , denoted by S =⇒G T , if there exists a graph rewrite rule
L =⇒ R ∈ G , where L′ =⇒ R′ is a renaming of L =⇒ R with respect to S, and a
morphism m : L′ → S�n such that S[m(R′)]n = T .
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3 Adequacy of Graph Rewriting

This chapter will establish a connection between the concepts of term rewriting
and graph rewriting.

Given two models of computation, term rewriting and graph rewriting, which
are so closely connected the question, arises: Can either be simulated by the
other? In [8] soundness of termgraph rewriting with respect to term rewriting
is shown.

−→ns tTRW

=⇒S TGRW

Every graph rewrite step can be simulated by n term rewrite steps, where n
equals the amount of paths to the node, which represented the redex. So far
this simulation works in one direction only and is interested in the results of
the computation. The intermediate steps may differ.

The next step in [7] was to prove stepwise equality. To this end sharing
(collapsing) and unsharing (copying)1 of nodes were developed, which now allow
a bi-directional simulation.

−→ns tTRW

=⇒n
coll · copS TGRW

Hence graph rewriting together with sharing and unsharing of nodes is ade-
quate to simulate term rewriting and vice verse. As mentioned in the introduc-
tion term rewriting is Turing-complete. Hence graph rewriting also is, as it can
simulate term rewriting.

−→ns tTRW

=⇒n
coll · copS TGRW

 k〈s〉 〈t〉TM

1Informally the sharing operation collapses two nodes, which represent the same subterm,
whereas unsharing copies a shared node to obtain an unshared node representing the same
subterm.
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Here 〈s〉 denotes a suitable encoding of s on a Turing Machine (TM) and  
denotes the next configuration relation of a TM. The above picture indicates
that functions computed by a TM can also be computed by term rewriting and
consequently graph rewriting. However, so far there is no connection between
the amount of rewrite steps n and the amount of steps needed by the TM k.
Such a connection is interesting as the computational complexity of a function
is defined via the amount of steps a TM takes to compute its result, i.e., compu-
tational complexity is defined as the runtime complexity of a TM. The runtime
complexity of a TM is a cost model, indicating how expensive a computation
is. Apparently such cost models are depending on the computational model.
Cost models for term rewriting usually base on the amount of rewrite steps of
a derivation.

A cost model is invariant if it has a polynomial relationship to the runtime
complexity on a TM, so when it is possible to perform an equivalent computa-
tion on a TM with polynomial overhead. In [3, 2] it has been shown that the
runtime complexity of a TRS is such an invariant cost model. The proof of this
fact simulates term rewriting by graph rewriting, reproving results from [8, 7],
and shows how graph rewriting can be implemented on a TM in polynomial
time. The focus hereby lay on the control over the required resources, thus
allowing an accurate characterization of the implementation. A similar result
concerning derivational complexity is shown in [5]. This fact is indicated in the
final picture below (where p(n) denotes a polynomial in n).

−→ns tTRW

=⇒n
coll · copS TGRW

 p(n)〈s〉 〈t〉TM

After this big picture the rest of this chapter will focus on the relationship
between term rewriting and graph rewriting.

Two problems induced by sharing nodes in the graph representation of a
term will be discussed first. Solutions with respect to innermost rewriting will
represent the results of [3]. Outermost evaluation will be inspected in a similar
manner and then a solution based on the results of [2] will be given.

Definition 3.1. Let R be a term rewrite system. The simulating graph rewrite
system G(R) is a graph rewrite system, containing for every rule l −→ r ∈ R a
graph rewrite rule L =⇒ R such that term(L) = l and term(R) = r.

The representation of a term as a termgraph is not unique. Termgraphs S
and T might be different, although term(S) = term(T ).

Example 3.2. Consider the following two termgraphs S and T .
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3 Adequacy of Graph Rewriting

+ : 1

x : 2

+ : 2

x : 1

Clearly term(S) = term(T ) but S 6= T .

Definition 3.3. Termgraphs S and T are isomorphic, whenever there exists a
bijective morphism m : S → T . Then term(S) is a variant of term(T ).

Another ambiguity is induced by different degrees of sharing.

Example 3.4. The following two termgraphs S, T again represent the same
term, i.e., term(S) = term(T ) – but again S 6= T .

+ : 1

0 : 20 : 3

S

+ : 1

0 : 2

T

Note however that it is possible to find a morphism m : S → T but not from T
to S.

Definition 3.5. Let S, T be termgraphs. T employs more sharing than S,
denoted by T 6m S, if there exists a morphism m : S → T such that for all
n ∈ S holds L(n) = L(m(n)).

3.1 Problems Arising

When simulating term rewriting with graph rewriting two problems occur. For
one, although a rule is applicable to a term, due to unfortunate sharing, no
morphism might be found and so the term graph is in normal form. On the
other hand, when rewriting a shared node in a graph, all the subterms starting
from this node are rewritten parallel.

3.1.1 Problem 1: No Morphism Found

When this problem arises, a termgraph is in normal form although the corre-
sponding term is not. To illustrate this, consider the following example.

Example 3.6. Consider the TRS R consisting of the rule x + x −→ sq(x) and
the term s = s(0) + s(0) which admits the derivation

s = s(0) + s(0) −→R sq(s(0)) = t ∈ NF(R)

There are several possible graph representations of s, depicted in the follow-
ing.
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3.1 Problems Arising

+

s s

0 0

S1

>m
+

s s

0

S2

>m
+

s

0

S3

Clearly term(S1) = term(S2) = term(S3) = s holds. But when considering
the rewrite rule x + x −→ sq(x) it becomes obvious that is only possible to find
a morphism to S3 as seen below.

+

s

0
S3

+

x

=⇒G(R)

sq

s

0

Notice that the above representation of the left hand side of the rewrite rule
really is the only possible termgraph representation. Recall an invariant on ter-
mgraphs is that every variable node has to be shared. Would one dismiss this
restriction, i.e., there exist two different nodes representing the same variable
node the graph morphism may map those two different nodes to different sub-
graphs. Therefore the corresponding substitution would map the same variable
to different subterms. Consequently the demand that every variable node is
mapped to the same subterm induces the demand of sharing a term such that
it is possible to find a morphism.

Why hasn’t this problem occurred before? First through an attentive choice
of examples or applying properly sharing without mentioning to do so. But
secondly: This problem does not always arise. It arises whenever there is a
shared variable node x on the left hand side of a rule – if a rule is not left-
linear. This will be discussed further in Section 3.4.

The question remains how to properly share a termgraph so that a morphism
might be found. In general it can be said that: The termgraph S has to be
maximally sharing below the redex position p, i.e., S�node(S, p) is maximally
sharing. One might argue now, always share a termgraph as much as possible
and this smoothly introduces the next problem.

3.1.2 Problem 2: Accidental Parallel Rewriting

When one is being pedantic, he or she might want to be able to exactly repro-
duce a term rewriting step with graph rewriting.

Example 3.7. So consider the TRS R = {0 + x −→R 0} and the term s =
(0 + 0)+(0 + 0) with the possible rewrite step

s = (0 + 0)+(0 + 0) −→R 0+(0 + 0) = t.
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3 Adequacy of Graph Rewriting

When the termgraph S corresponding to s is maximally sharing, there is only
one rewrite step possible.

S =

+

+

0

=⇒G(R)

+

0

= T

Unfortunately now term(T ) 6= t. To exactly reproduce the term rewrite step
using graph rewriting some possibility to unshare a shared node has to be given.
Therefore the shared node has to be reachable by a unique path and thus every
shared node along the path has to be copied.

S =

+

+

0

6m

+

+ +

0

=⇒G(R)

+

+

0

= T

Now term(T ) = t.

As it becomes apparent, to exactly reproduce the rewrite step one needs
unsharing. Now obviously the question is: Is it really necessary to exactly
reproduce? The answer is yes, on the grounds that one wants an adequate model
to simulate term rewriting. This becomes even more obvious when considering
a non-confluent TRS.

Example 3.8. Consider the TRS R =

different(1, 0) −→T

0 −→ 1

and the rewrite sequence

different(0, 0) −→R different(1, 0) −→R T.

The only possible graph rewrite sequence starting from a maximally sharing
graph and not using unsharing is

different

0

=⇒G(R)

different

1

Here it is never possible to reach the normal form T.

As a second invariant of termgraph rewriting it can therefore be ascertained:
The node corresponding to the redex position has to be unshared.
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3.2 Adequacy of Innermost Rewriting

3.2 Adequacy of Innermost Rewriting

In this section graph rewriting with respect to the innermost evaluation strategy
will be discussed first. Therefore the content from [3] will be summarized.

Innermost rewriting has by definition one for this purpose very interesting
feature: A redex does not contain another redex. In this observation lies the
key point of innermost graph rewriting. It allows to draw a strict line between
functions and computed data – which are terms in normal form. Depicted this
may look like

term

function calls
defined symbols

data
normal forms

The redices for innermost derivations are along this line. By rewriting the
data area may enlarge or shrink but the redices are always along this line.

Definition 3.9. A termgraph T is normal form sharing with respect to a
rewrite system R, if all nodes n with term(T �n) ∈ NF(R) are maximally shared.
Moreover all nodes n with term(T �n) /∈ NF(R) are minimally shared.

This special form of sharing allows to state the following adequacy result
from [3].

Theorem 3.10. Let R be a TRS and let G(R) denote the simulating graph
rewrite system. Let s be a term and S be the corresponding and normal form

sharing termgraph. Then s i−→R t if and only if S i=⇒G(R) · >m T where T is
normal form sharing

Proof. This theorem has been shown in [3, Theorem 19]. Here only the proof
idea will be given: By ascertaining that all normal forms are maximally shared,
the problem of not finding a morphism is tackled by the strategy. Consider
that every variable node in a rule can only be mapped to some normal form.
As every normal form is shared a morphism can be found. A second condition
remains to be met. The redex position has to be unshared. Assuming all the
normal forms are shared new nodes will only be introduced by the right hand-
side of a rule. Since rules are minimally sharing, applying a rewrite step does
not introduce more sharing. On the contrary, it might require to re-establish
the fact that every normal form is shared.

Innermost rewriting corresponds to call-by-value evaluation in (functional)
programs. Call-by-value requires all arguments to be computed values, i.e.,
normal forms. With this strategy however it is not possible to operate on
infinite data. Suppose you want the first element of an infinite list. Call-
by-value would require to first compute the whole list. This is not feasible.
The opposite of call-by-value evaluation is the call-by-name strategy, which
corresponds to outermost rewriting.
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3 Adequacy of Graph Rewriting

3.3 Adequacy of Outermost Rewriting

Call-by-name does not require the arguments of a function to be values. Thus
it allows working on infinite data, like for example in Haskell. Similar to in-
nermost rewriting, where the chosen redex does not contain another redex, one
may observe that for outermost rewriting the chosen redex is not contained in
another redex. Symmetrical to innermost’s requirement for only sharing, one
may now also expect outermost rewriting to require only unsharing to be ade-
quate. Unfortunately this is not the case. In this section it will be shown that
both operations – sharing and unsharing – are necessary to mimic outermost
term rewriting.

First a counterexample to show that outermost graph rewriting with un-
sharing is not adequate will be given. In the next step a counterexample will
illustrate that outermost graph rewriting with sharing is not adequate either.
Concluding an adequate technique for outermost rewriting will be explored,
implementing both sharing and unsharing based on [2].

Lemma 3.11. There exists a TRS R and terms s, t such that outermost graph
rewriting with unsharing is not adequate, i.e., s o−→R t such that t ∈ NF(R) but
it is not possible to find termgraphs S, T such that term(S) = s and term(T ) = t
and S o=⇒G(R) · 6m T .

Proof. Consider the TRS R:

eq(x, x) −→ T

comp(F) −→ T

and the following outermost derivation

s = eq(comp(F),T) o−→R eq(T,T) o−→R T = t whereas t ∈ NF(R).

There is only one possible simulating graph representation of R:

GRS G(R):

eq

x

=⇒ T

comp

F

=⇒ T

The only possible termgraph S such that term(S) = s is

eq

comp

F

T

Now consider the outermost rewrite step

S =

eq

comp

F

T
o=⇒G(R)

eq

T : 1 T : 2
= T
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3.3 Adequacy of Outermost Rewriting

As no morphism can be found, T is in normal form, i.e., T ∈ NF(G(R)), but
term(T ) 6= t.

We conclude that outermost graph rewriting without sharing is not fully
adequate. In the next example it will become evident that also unsharing is a
prerequisite.

Lemma 3.12. There exists a TRS R and terms s, t such that outermost graph
rewriting with sharing is not adequate, i.e., s o−→R t such that t ∈ NF(R) but it
is not possible to find termgraphs S, T such that term(S) = s and term(T ) = t
and S o=⇒G(R) · >m T .

Proof. Consider TRS R:

dup(x) −→ f(x, x)

f(a, b) −→ a

b −→ a

and the admitted outermost derivation

s = dup(b) o−→R f(b, b) o−→R f(a, b) o−→R a = t

Now consider the only possible graph representation of R

GRS G(R):

dup

x

=⇒
f

x

f

a b
=⇒ a b =⇒ a

The only possible graph representation of s is

S =

dup

b

This admits the outermost derivation:

S =

dup

b

o=⇒G(R)

f

b

o=⇒G(R)

f

a
= T

but term(T ) 6= t.

This shows that unsharing is a prerequisite for outermost graph rewriting.

When compared with innermost term rewriting, through the non-confluence
of this system, it becomes apparent, that the strategies do not yield the same
normal form. The next example is to illustrate, that innermost graph rewriting
does not require unsharing.

27



3 Adequacy of Graph Rewriting

Example 3.13. Consider the innermost rewrite sequence over the above TRS

s = dup(b) i−→R dup(a) i−→R f(a, a) = t

Clearly, as the choice of the redex differs with innermost rewriting, unsharing
does not become a prerequisite.

dup

b

i=⇒G(R)

dup

a

i=⇒G(R)

f

a

Next follows the inspection of outermost rewriting representing the results of
[2] for full rewriting. As observed above: To rewrite a termgraph at position p
the node corresponding to p has to be unshared and the subgraph starting at
p has to be maximally sharing. This requires precise control over the sharing
operation.

Definition 3.14. Let S, T be termgraphs and nodes n′, n ∈ S. Then S wn′n T
denotes the sharing of nodes n and n′. There exists a morphism m, with
S >m T , such that m(n′) = n and for all other nodes ni in S holds m(ni) = ni.
Define S An

′
n T as S wn′n T and n 6= n′.

This allows to collapse two nodes.

Definition 3.15. Let S, T be termgraphs and let p be a position in S. Then
S shares strictly below p to T , denoted by S Ip T if S An

′
n T for nodes n, n′

strictly below p.

Definition 3.16. Let S, T be termgraphs and let p be a position. Then S
unshares above p to T , denoted as S Cp T if S @n

′
n T for some unshared node

n′ above p.

Lemma 3.17. Let S be a termgraph and p a position in S. If S is Cp-minimal
then the node node(S, p) is unshared.

Proof. The proof can be found in [2, Lemma 4.13]

Example 3.18. Reconsider the counterexample in the proof of Lemma 3.11.

dup

b

o=⇒G
f

b : 1

C!
ε

f

b : 1 b : 2

o=⇒G
f

a : 1 b : 2

o=⇒G a

Lemma 3.19. Let S be a termgraph and p be a position in S. If S is Ip-
minimal then S�node(S, p) is maximally sharing.

Proof. The proof can be found in [2, Lemma 4.14]

Example 3.20. Reconsider the counter example of Lemma 3.12 – sharing nodes
1 and 2 is necessary to achieve the simulating graph rewrite step.
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3.4 Adequacy of Linear Term Rewrite Systems

eq

T : 1 T : 2
I!
ε

eq

T

o=⇒G T

These sharing and unsharing operations now allow to state the main adequacy
result from [2].

Theorem 3.21. Let s be a term and S a termgraph such that term(S) = s.
Then

s −→R,p t if and only if S C!
p · I!

p · =⇒G(R),p T

for some termgraph T with term(T ) = t.

Proof. The proof can be found in [2, Theorem 4.15]

3.4 Adequacy of Linear Term Rewrite Systems

So far different rewrite strategies were explored and no restriction on the TRS
was imposed. In the following section some restrictions on the rewrite sys-
tem allow to avoid the problems induced by sharing and unsharing. Consider
therefore the definition of linear.

Definition 3.22. A term t is linear if no variable occurs more than once in t.
A termgraph T is linear if term(T ) is linear. A rewrite rule l −→R r is left-linear
if l is linear. A TRS R is left-linear, if l is linear for all rules l −→R r ∈ R. A
TRS R is linear if for all l −→R r ∈ R holds l, r are linear.

In [1] it is shown, that left-linearity of a TRS eliminates the need for sharing.
This is justified by the observation, that every variable node occurs just once in
a left-linear rule. Thus always a morphism can be found, see Lemma 3.25. How-
ever, the problem of accidentally parallel rewriting remains and thus unsharing
is vital for the simulation.

Theorem 3.23. Let R be a left-linear TRS and G(R) be the simulating GRS.
Then s −→R,p t if and only if S C!

p · =⇒G(R),p T where term(S) = s and
term(T ) = t.

Proof. The proof can be found in [1, Theorem 7.3.].

When restricting to innermost rewriting also unsharing can be dropped.

Theorem 3.24. Let R be a left linear TRS and G(R) the simulating GRS,
further S is a termgraph, which does not contain any shared redices. Then

s i−→R t if and only if S i=⇒G(R) T where term(S) = s and term(T ) = t and T
does not contain any shared redices.

Proof. The proof follows the proof in [3, Theorem 19]. Note hereby that the
precondition that S is in normal form sharing is omitted by the fact that TRSR
is left linear. In T no shared redex will be introduced by the innermost rewrite
step.
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3 Adequacy of Graph Rewriting

This does not hold for rewriting in general and in particular not for outermost
rewriting. One may be convinced by reconsidering the counter example given in
the proof of Lemma 3.12. Note that the precondition of left-linearity is fulfilled.

Lemma 3.25. Let l be a term and s = lσ for some substitution σ. Further
term(S) = s and term(L) = l. If L is linear and minimally sharing then there
exists a morphism m : L→ S.

Proof. This is shown by induction on l. For the base case consider l ∈ V, then L
consists only of the root node. Set m(rt(L)) = rt(S). For the step case consider
l = f(t1, . . . , tk) and s = f(t1σ, . . . , tkσ). Further suppose SuccL(rt(L)) =
[n1, . . . , nk] and SuccS(rt(S)) = [u1, . . . , uk]. By the induction hypothesis there
exist morphisms m1, . . . ,mk with mi : L�ni → S�ui. Define the morphism
m : L → S as follows. Set m(rt(L)) = rt(S) and m(v) = m(vi) if v is in the
domain of mi. Note that the domains of m1, . . . ,mk are pairwise disjoint as no
node in L is shared, in particular no variable node due to linearity. Hence m is
well defined.

Theorem 3.26. Let R be a linear TRS and G(R) be the simulating GRS. Then
s −→R,p t if and only if S =⇒G(R),p T where term(S) = s and term(T ) = t and
S, T minimally sharing.

Proof. Following the proof of [2, Theorem 4.15] it has to be established that
node(S, p) = n is unshared. This is easily justified, as S is minimally sharing
and by definition of rewrite rule LS(n) 6∈ V, thus n is not shared. Further it
has to be established, that it is possible to find a morphism m : L→ S�n. This
holds by Lemma 3.25, as R is linear, in particular left linear, and S minimally
sharing. Last it has to be ascertained, that T is minimally sharing. Assume
T is not minimally sharing, then there is a node u with LT (u) ∈ F and u is
shared. If u ∈ S i.e., u ∈ S[�]p then S was not minimally sharing. Hence
u ∈ m(R′) (where L′ =⇒ R′ denotes the renaming of the rewrite step). Note
that R′ does not contain shared nodes as it is linear. Thus u 6∈ R′. Therefore
u ∈ S�v for some v. Since S�v is minimally sharing the only possibility left is
u = v. However this contradicts the right linearity of R′.
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4 Implementation

Originally designed to support the theoretical part of the thesis the program
expanded steadily–now supplementing a command line mode as well as an in-
teractive mode, which allows the user to experiment with term graph rewriting.

This original design induces a major draw-back though. The choice of the
programming language was not based on its qualification for this project, but
rather out of personal interest. The functional programming language Haskell
has been elected. The library implementing term rewriting is currently a project
of the Computational Logic Group and available online1.

4.1 A User’s View

This section first establishes the input format. Further for interested readers it
explains means to execute the program.

4.1.1 Input Format

The program requires two arguments: the term rewrite system and the term
to rewrite. A term rewrite system is provided by the path to a file containing
the system. This term rewrite system has to conform the specification for
termination problem data base (tpdb) entries also provided online2.

Example 4.1. The TRS with the single rule 0+x −→ 0 in conformity with the
by tpdb induced specification.
(VAR x)

(RULES

+(0, x) -> x)

A term is given as a string. The distinction of variable symbols and constants
is done via the argument list. Where variables do not carry any arguments, for
constants the empty argument list is required.

Example 4.2. The term x+ 0 is given as an argument as "+(x,0())".

4.1.2 Command Line

The program supports a command line interface. The installation of the pro-
gram is – thanks to cabal3 – very easy: Type $ cabal install in the directory
where you put the program.

To call the program one has to issue the following command4:

1http://cl2-informatik.uibk.ac.at/git/?p=rewriting;a=summary
2http://www.lri.fr/~marche/tpdb/format.html
3http://www.haskell.org/cabal/
4$ graphrewrite This will lead to the answer: Requires at least 2 arguments, got 0.
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4 Implementation

$ graphrewrite trs t

The arguments, the term rewrite system trs and the term t, have to be given
and have to follow the specification above.

Example 4.3. A possible call to the program
$ graphrewrite "/path/to/trs" "+(x,0())".

By default the program will now apply outermost graph rewrite steps to the
given start term until some normal form is reached. All intermediate steps will
be printed on to the console.

Furthermore some options are provided:

• -n will skip printing the intermediate steps.

• -t will apply outermost term rewriting instead of graph rewriting.

4.1.3 Interactive

The tool also supports interactive use. Therefore installation of GHCi5, version
6.12.1 or above is required. GHCi is GHC’s interactive environment. It sup-
ports evaluating expressions interactively and interprets programs. To start the
program in an interactive mode, issue the command $ ghci in the directory
where you extracted the program. A Haskell interpreter with the graph and
term rewriting modules loaded will start up.

The following commands are supported. It is possible to store a rewrite
system, a termgraph and a term globally so repetitive rewrite steps can be
performed on them.

• load sys :: FilePath -> IO ()

Parses a term rewrite system from the given file and stores it globally as
graph rewrite system and term rewrite system.

• load term :: String -> IO UTerm

Parses a term from the given string and stores it globally.

• load termgraph :: String -> IO TermGraph

Parses a termgraph from the given string and stores it globally.

• load term and termgraph :: String -> IO (TermGraph, UTerm)

Parses a term from the given string and stores the term and the corre-
sponding termgraph globally.

This values once set, it is possible to reference them via the following func-
tions.

• term :: IO UTerm

Returns the globally stored term.

5http://www.haskell.org/ghc/
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4.1 A User’s View

• termgraph :: IO TermGraph

Returns the globally stored termgraph.

• trs :: IO TermRewriteSystem

Returns the globally stored term rewrite system. To load a term rewrite
system see the command load sys.

• grs :: IO GraphRewriteSystem

Returns the globally stored graph rewrite system. To load a graph rewrite
system see the command load sys.

This globally set values might be rewritten now. Three choices for term
rewriting are available.

• t step :: IO UTerm

Performs a single rewrite step on the term set by load term wrt. the trs
set by load sys and stores the resulting term globally.

• t steps :: Int -> IO UTerm

Performs the given amount n of rewrite steps on the term set by load term

wrt. the trs set by load sys and stores the resulting term globally.

• t nf :: IO UTerm

Performs rewrite steps on the term set by load term wrt. the trs set by
load sys until a normal form is reached and stores the resulting term
globally.

Analogous it is possible to rewrite a termgraph with the corresponding func-
tions.

• gr step :: IO TermGraph

Performs a single rewrite step on the termgraph set by load termgraph

wrt. the grs set by load sys and stores the resulting termgraph globally.

• gr steps :: Int -> IO TermGraph

Performs the given amount n of rewrite steps on the termgraph set by
load termgraph wrt. the grs set by load sys and stores the resulting
termgraph globally.

• gr nf :: IO TermGraph

Performs rewrite steps on the termgraph set by load termgraph wrt. grs
set by load sys until a normal form is reached and stores the resulting
termgraph globally.

Furthermore a termgraph may employ different degrees of sharing. The pro-
gram enables the user to manually share a termgraph below a position or un-
share a given position.

• sharing :: Position -> IO TermGraph Maximally shares the term-
graph set by load termgraph below given position p.
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• unsharing :: Position -> IO TermGraph Unshares given position p

in the termgraph set by load termgraph.

As the program is started within the GHCi-environment, all of Haskell’s
Prelude functions are available to the user. That is why the program allows
all the above mentioned function concerning graph and term rewriting also in
an advanced version. The functionality stays the same, but the arguments are
given by the user. To clarify this:

• help :: IO ()

4.2 About the Implementation

This section briefly discusses the internals of the implementation. Here just
a short introduction to the program is given, the kind reader is referred to
the (haddock) documentation of the program for further insight, which can be
generated by $ cabal haddock.

The implementation bases on the Inductive Graph library6. This library
provides an interface for graph manipulation. When closer inspecting the graph
structure it becomes apparent that the implementation of graphs is based on
a map of contexts. A context contains information about ancestors, successors
and the label of a node in the graph. Unfortunately a map is a poor substitute
for pointers. This will become more apparent in Chapter 5. Consider the
drawback when inserting and edge into the graph. The contexts of the two
nodes concerned have to be fetched updated and re-inserted.

Mostly the functions of the program directly implement the theory. For
two functions foldtg, which implements sharing, and step, implementing an
outermost graph rewrite step, the implementation differs slightly and thus those
will be discussed here.

The implementation of foldtg is realized by a bottom-up approach. So first
all nodes with no successors are selected – the leaf nodes. Among these all
nodes which are candidates for sharing are shared. Then the evaluation moves
one level up, to the ancestors of the recently inspected nodes, and tries to share
among those. Note that the key idea here is, that whenever a node is considered
for sharing all it’s successors are already maximally shared. This continues
until the root node is reached. This results in a maximally sharing termgraph.
Advantage to this approach is that the termgraph has to be traversed only twice
– to find the leaf nodes and to share bottom up.

Next the implementation of step will be discussed. Recall that by Theo-
rem 3.21 a rewrite step can be performed as

S C!
p · I!

p · =⇒G(R),p T

Here it is tacitly assumed that the redex position p is given. Unfortunately
this is not the case, but p has to be found by repeatedly trying to find a

6http://hackage.haskell.org/packages/archive/fgl/latest/doc/html/

Data-Graph-Inductive-Graph.html
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4.2 About the Implementation

morphism between a rule and some subgraph of S. As observed before, to find
a morphism this subgraph has to be maximally sharing. [2, Lemma 5.8] uses
the following approach to find a redex position and perform the rewrite step.
To check whether a node corresponds to a redex, S I!

p S1 for p ∈ pos(S, n) is
computed. If n does correspond to a redex, the rewrite step is performed as
S C!

p · I!
p S2 =⇒G(R),p T . Note that I!

p is computed at least twice, probably
more often, if several nodes have to be checked. Further observe that this
approach is for full rewriting.

Since this implementation focuses on outermost rewriting the first node to be
checked will always be the root node. Hence the first sharing will be S I!

ε S1.
Obviously S1�p is maximally sharing for all p, i.e., S1 I!

p S1. Thus searching
for a redex position can be done in S1 for all nodes. Moreover the approach
above discards the sharing when performing the rewrite step. Keeping the
intermediate result S1 allows to perform the whole rewrite step as

S I!
ε S1 C

!
p S2 =⇒G(R),p T

where p is the redex position found in S1.
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5 Evaluation of the Implementation

This chapter is structured in two parts – how it should be and how it turned
out to be in a reality check with this implemented program.

5.1 Theoretical Advantages of Graph Rewriting

An advantage of graph rewriting lays on an implementational level. Consider
the rule eq(x, x) −→ T and the term eq(s(s(s(0))), s(s(s(0)))). To find the sub-
stitution σ : x 7→ . . . it has to be ascertained, that both arguments of eq are
mapped to the same by x, i.e., are identical terms. Therefore an equality check
has to be performed, i.e.,

s(s(s(0))) = s(s(s(0))) ⇐⇒
s(s(0)) = s(s(0)) ⇐⇒

s(0) = s(0) ⇐⇒
0 = 0

The tedious recursive equality check in term rewriting can be omitted by
checking for pointer equality in a termgraph.

refer to
the same node

eq

s

s

s

0

=⇒ T

Not by coincidence the example was chosen to be eq. In a maximally shared
termgraph term(S�n) = term(S�m) implies n = m. Therefore by establishing
that the successors of eq are referring to the same node one directly obtains
that they represent the same (sub-)term.

As mentioned before: The growth a termgraph is linearly bound in the length
of the rewrite sequence. This fact will be elaborated further.

Definition 5.1. Let t be a term. The size of t, |t|, expresses the amount of
function symbols and variables in t. Let T be a termgraph. The size of T ,
denoted by |T |, refers to the amount of nodes in T , i.e., the size of the set VT .
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The following lemma from [2] illustrates one of the main benefits of graph
rewriting.

Lemma 5.2. Let S0, T be termgraphs and G be a graph rewrite system and
let S0 C!

p · I!
p S. Consider the step S =⇒G,p T . Then |T | 6 |S| + ∆, where

∆ = max{|R| | L =⇒ R ∈ G}.
The size growth in a rewrite step of a termgraph is bound by the size of the

largest right hand side of a rule in the graph rewrite system. This does not hold
for term rewriting because subterms might be duplicated.

Example 5.3. To illustrate the advantage of graph rewriting consider the fol-
lowing TRS.

f(s(n), x) −→ f(n, c(x, x))

f(0, x) −→ x

As one can see the subterm x is duplicated (or copied, hence c) every step.

f(s5(0), a) −→ f(s4(0), c(a, a))

−→ f(s3(0), c(c(a, a), c(a, a)))

−→ f(s2(0), c(c(c(a, a), c(a, a)), c(c(a, a), c(a, a))))

−→ f(s(0), c(c(c(c(a, a), c(a, a)), c(c(a, a), c(a, a))),

c(c(c(a, a), c(a, a)), c(c(a, a), c(a, a)))))

−→ f(0, c(c(c(c(c(a, a), c(a, a)), c(c(a, a), c(a, a))),

c(c(c(a, a), c(a, a)), c(c(a, a), c(a, a)))),

c(c(c(c(a, a), c(a, a)), c(c(a, a), c(a, a))),

c(c(c(a, a), c(a, a)), c(c(a, a), c(a, a))))))

−→ c(c(c(c(c(a, a), c(a, a)), c(c(a, a), c(a, a))),

c(c(c(a, a), c(a, a)), c(c(a, a), c(a, a)))),

c(c(c(c(a, a), c(a, a)), c(c(a, a), c(a, a))),

c(c(c(a, a), c(a, a)), c(c(a, a), c(a, a)))))

The same derivation using graph rewriting is pictured below.
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The linear size growth of a termgraph in the length of the derivation allows
a precise control over the resources occupied. Thus when implementing term
rewriting via graphs the complexity of functions computed by a TRS can be an-
alyzed. This analysis for innermost rewriting was presented in [3] and extended
to full rewriting in [2]. The results are summarized below.

Definition 5.4. Let F be a signature and R be a TRS. Divide F into defined
symbols D := {f | rt(l) = f for some l −→ r ∈ R} and C := F \ D. Terms over
T (C,V) are called constructor terms and are collected in Val.

Definition 5.5. A confluent and terminating TRSR computes an n-ary partial
function f : Valn → Val if there exists a defined symbol f ∈ D and for all
s1, . . . sk, t ∈ Val holds:

f(s1, . . . sk) −→!
R t ⇐⇒ f(s1, . . . sk) = t

A polynomial relationship between the number of rewrite steps admitted by
R and the computational complexity of the defined functions has been proven
in [3] and [2]. These results will be presented in the following. The runtime
complexity of a TRS is the longest derivation possibly be made in relation to
the size of the start term.

Definition 5.6. The derivation length of a term s with respect to the rewrite
relation −→ is defined as dl(s,−→) := max{k | ∃t such that s −→k

R t}.

Definition 5.7. The runtime complexity rc(n) of a TRS R is defined by
rc(n) := max{dl(s,−→) | s = f(s1, . . . , sk) and s1, . . . sk ∈ Val and |s| ≤ n}.
The innermost runtime complexity rci is defined analogous with i−→R.

Theorem 5.8. Let R be a confluent and terminating TRS, moreover suppose
rci = O(nk) for all n ∈ N and some k ∈ N. The functions computed by R are
computable in time O(n5(k+1)).

Proof. The proof can be found in [3, Theorem 27].
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Theorem 5.9. Let R be a confluent and terminating TRS, moreover suppose
rc(n) = O(nk) for all n ∈ N and some k ∈ N and k > 1. The functions
computed by R are computable in time O(n7k+3).

Proof. The proof can be found in [2, Theorem 6.2.].

5.2 Reality Check

Now the actual performance of the implementation was measured in comparison
to the implementation of term rewriting mentioned in Chapter 4. The tests
were performed on an ASUS EEE 1005HA with one Intel(R) Atom(TM) CPU
N270 1.60GHz and 1 GB main memory. As operating system Fedora release
13 (Goddard) with the 32bit kernel in version 2.6.34 was used. The version of
GHC was 6.12.1. Moreover the profiling mechanism of GHC1 was used to get
more detailed information about the behavior of the program.

An initial attempt was to compare the implementations on a simple TRS
computing the square of a natural number to get an idea about the performance.
The following TRS with terms of the form sq(sn(0)) was used.

0+ y −→ y

s(x)+ y −→ s(x+ y)

0 + y −→ 0

s(x) + y −→ (x + y)+ y

sq(x) −→ x + x

Figure 5.1 shows the connection between the size of the input term and the run
time of the program when using graph rewriting and term rewriting, respec-
tively.
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Figure 5.1: Runtime for the square function.

1http://www.haskell.org/ghc/docs/latest/html/users_guide/profiling.html
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To find which operations require the resources in graph rewriting some ex-
ample TRS were constructed.

First, to minimize the effort of finding a redex and sharing, trying to take full
advantage of outermost rewriting consider the TRS implementing the identity
function: id(x) −→ x. The expectation was that term rewriting trumps graph
rewriting as this example does not exploit any benefits of graph rewriting.
Nevertheless this test was made to find potential bottlenecks. In comparison
with term rewriting the program runtime was like shown in Figure 5.2.
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Figure 5.2: Runtime for the identity function.

When profiling with the input term id2500(0) it becomes apparent that graph
rewriting needs 61.2 % of the runtime for calls to the function subgraph, which
implements garbage collection. Some 56.8 % of this 61.2 % are spent in calls
to reachable, an implementation provided by the Graph Library to detect
whether a node is reachable from a given node. A further bottleneck lies in the
function foldtg, which implements the maximal sharing of a graph. About
37.8 % of the time are spent here. This may come as a surprise, as no actual
sharing is done in the derivation. Unfortunately still a large termgraph has
to be checked to ascertain this fact. The implementation of foldtg issues
over 3 Million calls to the function ancestors which take up 15.9 % of the
time. Further, implied by the bottom up approach of foldtg another 14.5 %
are spent in finding leaf nodes. A possible point for improvement in future
implementations is some kind of memoization to check whether a (sub-)graph
is still maximally shared.

Th next example was constructed to further investigate the finding of redices
and foldtg. The TRS considered is x + 0 −→ 0, together with terms of the
following form +( +(. . . +( +(0, 0), +(0, 0)) . . .)). Here it was expected that
after the initial effort of sharing the termgraph, graph rewriting will catch up
to term rewriting, which has to handle large terms. However this did not hold
as the size of the term reduces in every step.
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The runtime comparison is depicted in Figure 5.3.
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Figure 5.3: Runtime for simple multiplication.

Profiling the program shows: The call of the first rewrite step takes up 59.3 %
of the programs total runtime. This is entirely due to the first call of foldtg,
as the initial minimally sharing termgraph, which was generated from the input
term, has to be shared maximally. This 59.3 % split into 39.5 % for calls to
redirect which redirects an edge from one node to another. Hereby are 10.5 %
of the time spent in insertEdge and 28.8 % deleteEdge. Another chunk in
this foldtg call with 16.1 % is calls to deleteNode, which is called for over
16000 nodes. The further rewrite steps take 36.6 % of the time. Within this
percentage 19 % are spent in foldtg, the rest of the time is evenly distributed
among the various functions implementing rewriting.

Nevertheless it is possible to construct an example TRS, where graph rewrit-
ing has a slight advantage over term rewriting. Note that this TRS is very
similar to the TRS considered in Example 5.3. Here the advantage, that graph
rewriting does not duplicate subgraphs throughout the derivation is utilized.

f(n) −→ f ′(n, a)

f ′(s(n), x) −→ f ′(n, dup(x, x))

f ′(0, x) −→x

The runtime comparison is shown in Figure 5.4.
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Figure 5.4: Runtime for a duplicating rule.

This statistics underline the major drawback of term rewriting which can be
overcome by graph rewriting, even though the implementation is not optimized.
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6 Conclusion

This thesis set out with the aim to prove adequacy of outermost graph rewriting
and to find some complexity bound. As this has been established in [2] for
graph rewriting in general, it was clear that outermost rewriting is adequate.
The idea – or hope – was that outermost rewriting allows the redundancy of
the sharing operation. In this work it has been shown that this does not hold,
i.e., sharing and unsharing operations are necessary to simulate outermost term
rewriting with graph rewriting. Thus the results of [2] are re-presented to give
an adequate simulation.

The initial implementation of outermost graph rewriting has then evolved
further. Originally designed to support the theory, to allow me deeper insight
to the techniques behind graph rewriting. Therefore the choice of the functional
programming language Haskell was taken out of personal interest rather than
suitability. This was clearly established in the last chapter of the thesis – the
evaluation of the implementation. As graphs are not a recursive data structure
a functional approach was not the best one. Therefore I conclude in future I
will take special care in choosing the most suitable option for matters at hand.
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