From Trees to Graphs:
 Understanding the Implications of Sharing for Rewriting

Motivation

- rewriting $=$ transformation of objects based on rules
- term rewriting [1,2] objects are terms = trees

with rule

- from trees to graphs ~ term graph rewriting sharing of equal subterms, avoids blow-up in size

term graph [3]
f:(1)
x: (2)

Background \& Related Work

- term graph rewriting with explicit sharing and unsharing

simulates term rewriting with linear size growth and polynomial overhead $[3,4]$
- but \preceq counter-intuitive, hence investigate with only \succeq

Every term graph rewrite step can be simulated by n term rewrite steps.
Termination of term rewriting
\Rightarrow terminination of term graph rewriting [5]
$\nLeftarrow \mathcal{M}$ see infinite rewrite sequence with rule:

- show termination of term graph rewriting after [6] re-prove result \& transfer to formalism in [3]

Aim: understand the implication of sharing on rewriting \& on termination, i.e., the absence of infinite rewrite sequences

Contribution

Theorem: A well-quasi order \sqsubseteq on Top can be extended to a well-quasi order \sqsubseteq on term graphs

Proof Sketch: (Kruskal's tree theorem [7], minimal bad sequences [8])

- \sqsubseteq is a well-quasi order if all infinite sequences are "good"
"good" means for some $\mathrm{i}<\mathrm{j}: \triangle_{i} \sqsubseteq \triangle_{j}$
- construct minimal "bad" sequence T
"bad" means for all $\mathrm{i}<\mathrm{j}: \quad \triangle_{i} \nsubseteq \Delta_{j}$

- take arguments of \mathbf{T}

by minimality of \mathbf{T} and transitivity of \sqsubseteq, \mathbf{G} is "good",
i.e., there is a $\underset{\square}{8}$ 周
- take Tops of T

there exists an infinite subsequence such that

$$
\mathrm{f}_{\mathrm{p}:}: \quad 5 \mathrm{8} \sqsubseteq \mathbf{8} \sqsubseteq \mathrm{~d} \sqsubseteq
$$

References:

[1] Baader, F, Nipkow, T: Term Rewriting and All That (1998)
[2] TeReSe (2003)
[3] Avanzini, M: Verifying Polytime Computability Automatically (2013)
[4] Kennaway, JR, et al: On The Adequacy Of Graph Rewriting For Simulating Term Rewriting (1994)

- construct from Top and argument graph
contradiction to \mathbf{T} is "bad"

News:

- definition of \sqsubseteq for term graph flavour [3]
- re-prove directly with Kruskal's tree theorem
- insight: view arguments as one argument graph
...and so what?

Vision

- basis for a termination order on term graphs [6]
- basis for an automated termination analysis for term graph rewriting
- applications for term graph rewriting

Summary: By moving from a tree to a graph representation, the termination behavior of rewriting changes. I re-proved that an order on the top of term graphs can be extended to an order on term graphs. This is the basis for constructing a termination order and enabling automated termination analysis
[5] Plump, D: Term Graph Rewriting (1999)
[6] Plump, D: Simplification Orders for Term Graph Rewriting (1997)
[7] Kruskal, JB: Well-Quasi-Ordering, The Tree Theorem, and Vazsonyi's Conjecture (1960)
[8] Nash-Williams, CSJA: On Well-Quasi-Ordering Finite Trees (1963)

